The Fern Sporangium: A Unique Catapult

X. Noblin,* N. O. Rojas,† J. Westbrook,‡ C. Llorens,§ M. Argentina,¶ J. Dumais

Spore dispersal in plants and fungi plays a critical role in the survival of species and is thus under strong selective pressure. As a result, various plant and fungal groups have evolved ingenious mechanisms to disperse their spores effectively (1, 2). Many of these mechanisms use the same physical principles as man-made devices but often achieve better performance. One such dispersal mechanism is the cavitation-triggered catapult of fern sporangia. The sporangia open when dehydrating and use the stored elastic energy to power a fast closure motion that ultimately ejects the spores. The beauty of this dispersal mechanism and its similarity with medieval catapults have not escaped notice (3,4). All man-made catapults are equipped with a crossbar to stop the motion of the arm midway. Without it, catapults would lose water by evaporation, water tension builds up within them, thus enforcing the thickened radial walls closer together and causing lateral walls to collapse internally (3, 4) (Fig. 1B and movie S1). The whole annulus is thus bent out of shape, much like an accordion in the hands of a musician. The strong change in curvature (Fig. 1, B and D) forces the opening of the sporangium at the stomium, thus exposing the spores. When water tension in the annulus cells reaches a critical value [about 9 MPa (5)], cavitation occurs within adjacent cells (6) (Fig. 1C, fig. S2, and movies S2 and S3). The annulus then closes by 30 to 40% within about 10 μs, leading to a quick release of the energy stored in the annulus and expulsion of the spores at an initial velocity of up to 10 m s⁻¹ (7). This corresponds to an acceleration of about 10⁷g. This first phase is followed by a comparatively slow relaxation to an 85% closed configuration in a few hundreds of ms. We interpret the two time scales as a fast inertial recoil of the annulus followed by a slow poroelastic dissipation (8) of the energy remaining in the annulus. The annulus walls are constituted of a tight network of cellulosic fibers surrounded by water that flows to conform to their relative displacements. The tiny size of the pores (9) and thick walls (10) induce strong viscous losses (from Darcy’s law) that dramatically slow down the annulus motion. This dynamic can be described by using a generalized viscoelastic Maxwell model that fits our data very well and integrates all the physical forces at play (Fig. 1E and fig. S3). The measured and predicted time scales are in good agreement both for the inertial (respectively 25 and 27 μs) and the poroelastic (respectively 5.8 and 3 ms) regimes. The coexistence of these two widely different time scales allows the sporangium to release its spores efficiently without the use of structural elements to arrest the recoil motion.

A dozen cells placed in a row can fulfill all the functions of a medieval catapult, including the motive force for charging the catapult (water cohesion), energy storage (annulus wall), triggering mechanism (cavitation), and returning motion arrest (poroelastic behavior of the annulus wall).

Fig. 1. (A) The sporangium of Polypodium aureum. Annulus geometry during sporangium opening in (B) and in (C) just before cavitation and 0.4 and 40 ms after cavitation. Note the seven cells that have cavitated (red arrows). (D) Annulus curvature during opening (blue) and closing (red) phases. (E) The closing phase in log-linear scale reveals the poroelastic relaxation; the green line represents the fit from our model. The numbers correspond to frames in (B) and (C). (Inset) Expended view of the inertial oscillations.

References and Notes

Acknowledgments: This work was supported by the Materials Research Science and Engineering Center (Harvard University), the CNRS (PIR project “EVAPLANET”), the Agence Nationale de la Recherche (project “CAVISOF”), and the Commission national d’Investigation Scientifique et Technologique (N.R.).

Supporting Online Material
www.sciencemag.org/cgi/content/full/335/6074/1322/DC1
Materials and Methods
Fig. S1 to S4
References
Movies S1 to S4
31 October 2011; accepted 7 February 2012
10.1126/science.1215985
*Université de Nice Sophia Antipolis (UNS), Laboratoire de Physique de la Matière Condensée, CNRS UMR 7336, Parc Valrose 06108 Nice cedex, France. †UNS, Laboratoire J. A. Dieudonné, CNRS UMR 7351, Parc Valrose 06108 Nice cedex, France. ‡Department of Botany, University of Florida, Gainesville, FL 32611, USA. §Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA.
*To whom correspondence should be addressed. E-mail: xavier.noblin@unice.fr